

General Description

The AME5287 is a Synchronous Rectified Step-Down Converter with internal power MOSFETs. It achieves 3A continuous output current over a wide switching frequency range with excellent load and line regulation.

Current mode operation provides fast transient response and eases of loop stabilization. Internal soft-start minimizes the inrush supply current at startup. The circuit protection includes cycle-by-cycle current limiting, output short circuit frequency protection and thermal shutdown. In shutdown mode, the regulator reduces the current less than 1μ A of supply current.

This device is available in SOP-8/PP ,DFN-8 package with exposed pad for low thermal resistance.

Features

- 3A Output Current
- Stable with Low ESR Output Ceramic Capacitors
- Pre-Regulator for Linear Regulators
- Up to 95% Efficiency
- Less than 1µA Shutdown Current
- Wide Switching Frequency Range from 300KHz~2MHz
- Thermal Protection
- Cycle-by-Cycle Over Current Protection
- Output Adjustable from 0.8V to V_{IN}
- Short Circuit Protection
- Green Products Meet RoHS Standards

Applications

- TV
- Distributed Power Systems
- Pre-Regulator for Linear Regulators
- Digital Cameras

3A, 300KHz ~ 2MHz Synchronous Rectified Step-Down Converter

Typical Application

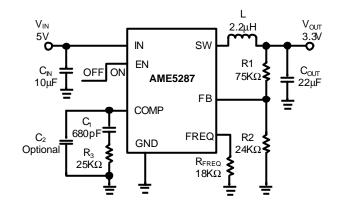


Figure 1. 3.3V at 3A Step-Down Regulators.

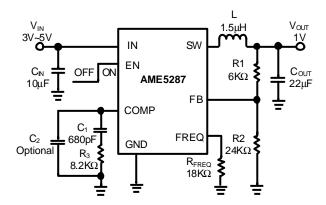
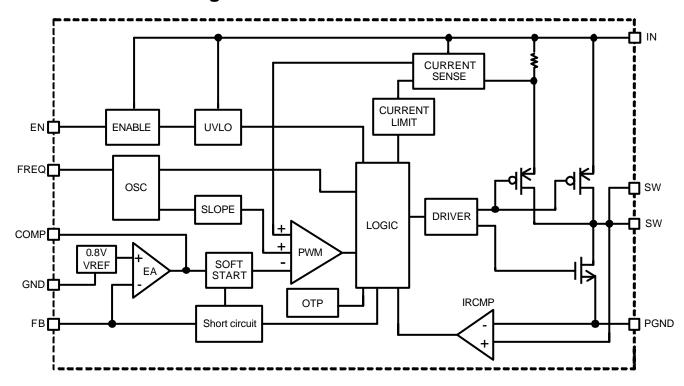
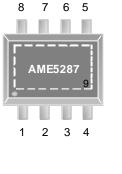
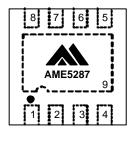



Figure 2. 1V at 3A Step-Down Regulators.


3A, 300KHz ~ 2MHz Synchronous Rectified Step-Down Converter

Functional Block Diagram

Pin Configuration


SOP-8/PP Top View

AME5287-AZAADJ

- 1. COMP
- 2. GND
- 3. EN
- 4. IN
- 5. SW
- 6. SW
- 7. FREQ
- 8. FB
- 9. GND (Exposed Pad)
- * Die Attach: Conductive Epoxy

DFN-8C (3mmx3mmx0.75mm) Top View

AME5287-AVAADJ

- 1. COMP
- 2. GND
- 3. EN
- 4. IN
- 5. SW
- 6. SW
- 7. FREQ
- 8. FB
- 9. GND (Exposed Pad)
- * Die Attach: Conductive Epoxy

AME5287

Pin Description

Pin No.	Pin Name	Pin Description
1	COMP	Compensation Node. COMP is used to compensate the regulation control loop. Connect a series RC network from COMP to GND to compensate the regulation control loop. In some cases, an additional capacitor from COMP to GND is required.
2	GND	Ground. Connect the exposed pad to GND.
3	EN	Enable. Pull EN below 0.4V to shut down the regulator.
4	IN	Power Input. IN supplies the power to the IC, as well as the step-down converter switches. Bypass IN to GND with a suitable large capacitor to eliminate noise on the input to the IC.
5, 6	SW	Power Switching Output. SW is the switching node that supplies power to the output. Connect the output LC filter from SW to the output load.
7	FREQ	Frequency Adjust Pin. Add a resistor from this pin to ground determines the switching frequency.
8	FB	Feedback Input. FB senses the output voltage to regulate that voltage. Drive FB with a resistive voltage divider from the output voltage. The feedback reference voltage is 0.8V.
9	GND	Ground. Connect the exposed pad to GND.

3A, 300KHz ~ 2MHz Synchronous Rectified Step-Down Converter

Ordering Information

AME5287 - x x x xxx Output Voltage Number of Pins Package Type Pin Configuration

Pin Configuration	Package Type	Number of Pins	Output Voltage
A 1. COMP (SOP-8/PP) 2. GND (DFN-8C) 3. EN 4. IN 5. SW 6. SW 7. FREQ 8. FB 9. GND	Z: SOP/PP V: DFN	A: 8	ADJ: Adjustable

3A, 300KHz ~ 2MHz Synchronous **Rectified Step-Down Converter**

■ Absolute Maximum Ratings

Parameter	Symbol	Maximum	Unit
Supply Voltage	V _{IN}	6	V
Switch Voltage	V _{SW}	-1.5V to V _{IN} +0.7V	V
EN, FB, COMP, FREQ to GND		-0.3V to V _{IN} +0.3V	V
ESD Classification	HBM	2	kV
	ММ	200	V

Recommended Operating Conditions

Parameter	Symbol	Rating	Unit
Ambient Temperature Range	T _A	-40 to +85	
Junction Temperature Range	TJ	-40 to +125	°C
Storage Temperature Range	T _{STG}	-65 to +150	

Thermal Information

Parameter	Package	Die Attach	Symbol	Maximum	Unit	
Thermal Resistance*	SOP-8/PP		ρ	15		
(Junction to Case)	DFN-8C		θ_{JC}	8.2	°0 / 1 / 1	
Thermal Resistance	SOP-8/PP	Conductive Enoug	0	75	°C/W	
(Junction to Ambient)	DFN-8C	Conductive Epoxy	θ_{JA}	70		
Internal Dower Dissipation	SOP-8/PP		PD	1.333	W	
Internal Power Dissipation	DFN-8C		۲D	1.429	vv	
Maximum Junction Temperature				150	°C	
Lead Temperature (soldering 10 se	ec)**			260	°C	

 $^{*}\,$ Measure θ_{JC} on backside center of Exposed Pad. $^{**}\,$ MIL-STD-202G 210F

AME5287

Electrical Specifications

 V_{IN} =5V, T_A=25°C, unless otherwise noted.

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Input Voltage	V _{IN}		3		5.5	V
Input UVLO	V _{UVLO}			2.3		V
Quiescent Current	Ι _Q	V _{EN} =5V, V _{FB} =0.7V (No Switching)		600		μΑ
Shutdown Current	I _{SHDN}	V _{EN} =0V			1	μΑ
Feedback Voltage	V _{FB}		0.784	0.8	0.816	V
Feedback Current	I _{FB}		-50		50	nA
Load Regulation	REG _{LOAD}	0A <i<sub>OUT<2A</i<sub>		0.25		%
Line Regulation	REG _{LINE}	2.7V <v<sub>IN<5.5V</v<sub>		0.25		%/V
EN Voltage High	V _{EN}		1.4			V
EN Voltage Low	V EN				0.4	V
EN Leakage Current	I _{ENLK}	V _{EN} =3V		0.1	1	μA
		R _{FREQ} =NC	240	300	360	KHz
Switching Frequency	F _{sw}	R_{FREQ} =120K Ω	480	600	720	KHz
Switching Frequency	ΓSW	R_{FREQ} =47K Ω	0.8	1	1.2	MHz
		R_{FREQ} =18K Ω	1.6	2		MHz
High-side Switch Current Limit				3.7		А
Error Amp Transconductance	G _{EA}			400		μΑ/γ
Switch Leakage Current	I _{SWLK}	$V_{SW}=0V, V_{EN}=0V$		0.1	20	μA
High-side Switch On Resistance	R _{DSON,HI}			130		mΩ
Low-side Switch On Resistance	R _{DSON,LO}			90		mΩ
Thermal Shutdown Protection	OTP	Rising		160		°C
	ОТН	Hysteresis		20		°C

Detailed Description

Normal Operation

The AME5287 uses a user adjustable frequency, current mode step-down architecture with internal MOSFET switch. During normal operation, the internal high-side (PMOS) switch is turned on each cycle when the oscillator sets the SR latch, and turned off when the comparator resets the SR latch. The peak inductor current at which comparator resets the SR latch is controlled by the output of error amplifier EA. While the high-side switch is off, the low-side switch turns on until either the inductor current starts to reverse or the beginning of the next switching cycle.

Dropout Operation

The output voltage is dropped from the input supply for the voltage which across the high-side switch. As the input supply voltage decreases to a value approaching the output voltage, the duty cycle increases toward the maximum on-time. Further reduction of the supply voltage forces the high-side switch to remain on for more than one cycle until it reaches 100% duty cycle.

Soft-Start

The AME5287 has a built-in digital soft-start to control the output voltage rise and limit the current surge at the start-up.

When the internal soft-start begins, and count 896 switching cycles, soft start is complete, the converter enters steady state operation.

Hiccup Mode

During hiccup mode, the AME5287 disables the highside MOSFET and begins a cool down period of 8320 switching cycles. At the conclusion of this cool down period, the regulator performs an internal 896 cycle soft start identical to the soft start at turn-on.

3A, 300KHz ~ 2MHz Synchronous Rectified Step-Down Converter

Under Voltage Protection

Under Voltage Protection will activate once the feedback voltage falls below 0.4V, the operating frequency is switched to 1/10 of normal switching frequency and after four-times hiccup mode counted, the internal high-side power switch will be turned off, and latched. Unless Restart the power supply.

Over Temperature Protection

In most applications the AME5287 does not dissipate much heat due to high efficiency. But, in applications where the AME5287 is running at high ambient temperature with low supply voltage and high duty cycles, such as in dropout, the heat dissipated may exceed the maximum junction temperature of the part. If the junction temperature reaches approximately 160°C, the internal high-side power switch will be turned off and the SW switch will become high impedance.

Inductor Selection

For most applications, the value of the inductor will fall in the range of 2.2 μ H to 4.7 μ H. Its value is chosen based on the desired ripple current. Large value inductors lower ripple current and small value inductors result in higher ripple currents. Higher V_{IN} or V_{OUT} also increase the ripple current Δ I_L:

$$\Delta I_{L} = \frac{1}{f \times L} V_{OUT} \left(1 - \frac{V_{OUT}}{V_{IN}} \right)$$

A reasonable inductor current ripple is usually set as 1/ 3 to 1/5 of maximum out current. The DC current rating of the inductor should be at least equal to the maximum load current plus half the ripple current to prevent core saturation. For better efficiency, choose a low DCR inductor.

Capacitor Selection

In continuous mode, the source current of the top MOSFET is a square wave of duty cycle V_{OUT}/V_{IN} . To prevent large voltage transients, a low ESR input capacitor sized for maximum RMS current must be used. The maximum RMS capacitor current is given by:

$$\mathbf{C}_{\mathrm{IN}} \text{ requires } \mathbf{I}_{\mathrm{RMS}} \cong I_{OMAX} \frac{\sqrt{V_{OUT} (V_{IN} - V_{OUT})}}{V_{IN}}$$

This formula has a maximum at $V_{IN}=2V_{OUT}$, where $I_{RMS}=I_{OUT}/2$. For simplification, use an input capacitor with a RMS current rating greater than half of the maximum load current.

The selection of C_{OUT} is driven by the required effective series resistance (ESR). Typically, once the ESR requirement for C_{OUT} has been met, the RMS current rating generally far exceeds the $I_{RIPPLE(P-P)}$ requirement. The output ripple ΔV_{OUT} is determined by:

$$\Delta \mathsf{V}_{\mathsf{OUT}} \cong \Delta I_L \Biggl(ESR + \frac{1}{8fC_{OUT}} \Biggr)$$

For a fixed output voltage, the output ripple is highestat maximum input voltage since ΔI_{L} increases with input voltage.

When choosing the input and output ceramic capacitors, choose the X5R or X7R dielectric formulations. These dielectrics have the best temperature and voltage characteristics of all the ceramics for given value and size.

3A, 300KHz ~ 2MHz Synchronous Rectified Step-Down Converter

Output Voltage Programming

The output voltage of the AME5287 is set by a resistive divider according to the following formula:

$$V_{OUT} = 0.8 \times \left[1 + \frac{R1}{R2}\right] Volt.$$

Loop Compensation

The AME5287 employs peak current mode control for easy use and fast transient response. Peak current mode control eliminates the double pole effect of the output LC filter. It greatly simplifies the compensation loop design.

With peak current mode control, the buck power stagecan be simplified to be a one-pole and one-zero system in frequency domain. The pole can be calculated by:

$$f_{P1} = \frac{1}{2\boldsymbol{p} \times \boldsymbol{C}_{OUT} \times \boldsymbol{R}_L}$$

The zero is a ESR zero due to output capacitor and its ESR. It can be calculated by:

$$f_{Z1} = \frac{1}{2\boldsymbol{p} \times C_{OUT} \times ESR_{COUT}}$$

Where C_{OUT} is the output capacitor, R_L is load resistance; ESR_{COUT} is the equivalent series resistance of output capacitor.

The compensation design is to shape the converter close loop transfer function to get desired gain and phase. For most cases, a series capacitor and resistor network connected to the COMP pin sets the pole-zero and is adequate for a stable high-bandwidth control loop.

In the AME5287, FB pin and COMP pin are the inverting input and the output of internal transconductance error amplifier (EA). A series R_3 and C_1 compensation network connected to COMP pin provides one pole and one zero: for R_3 <A_{EA}/GEA,

$$f_{P2} = \frac{1}{2\boldsymbol{p} \times C_1 \left(R_3 + \frac{A_{EA}}{G_{EA}}\right)} \approx \frac{G_{EA}}{2\boldsymbol{p} \times C_1 \times A_{EA}}$$
$$f_{Z2} = \frac{1}{2\boldsymbol{p} \times C_1 \times R_3}$$

where $\boldsymbol{G}_{\text{EA}}$ is the error amplifier transconductance

A_{EA} is the error amplifier voltage gain

R₃ is the compensation resistor

C₁ is the compensation capacitor

The desired crossover frequency f_c of the system is defined to be the frequency where the control loop has unity gain. It is also called the bandwidth of the converter. In general, a higher bandwidth means faster response to load transient. However, the bandwidth should not be too high because of system stability concern. When designing the compensation loop, converter stability under all line and load condition must be considered. Usually, it is recommended to set the bandwidth to be less than 1/10 of switching frequency. Using selected crossover frequency, f_c , to calculate R_3 :

$$R_3 = f_C \times \frac{V_{OUT}}{V_{FB}} \times \frac{2\boldsymbol{p} \times C_{OUT}}{G_{EA} \times G_{CS}}$$

3A, 300KHz ~ 2MHz Synchronous Rectified Step-Down Converter

Where G_{CS} is the current sense circuit transconductance. The compensation capacitor C_1 and resistor R_3 together make zero. This zero is put somewhere close to the pole f_{P1} of selected frequency. C_1 is selected by:

$$C_1 = \frac{C_{OUT} \times R_L}{R_3}$$

Checking Transient Response

The regulator loop response can be checked by looking at the load transient response. Switching regulators take several cycles to respond to a step in load current. When a load step occurs, V_{OUT} immediately shifts by an amount equal to ($\Delta I_{LOAD} \times ESR$), where ESR is the effective series resistance of C_{OUT}. ΔI_{LOAD} also begins to charge or discharge C_{OUT}, which generates a feedback error signal.

The regulator loop then acts to return V_{OUT} to its steadystate value. During this recovery time V_{OUT} can be monitored for overshoot or ringing that would indicate a stability problem.

Efficiency Considerations

Although all dissipative elements in the circuit produce losses, one major source usually account for most of the losses in AME5287 circuits: PR losses. The PR loss dominates the efficiency loss at medium to high load currents.

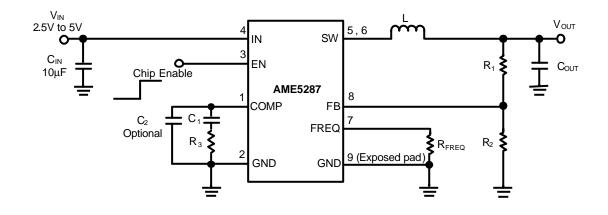
The I^PR losses are calculated from the resistances of the internal switches, R_{SW}, and external inductor R_L. In continuous mode, the average output current flowing through inductor L is "chopped" between the main switch and the synchronous switch. Thus the series resistance looking into the SW pin is a function of both top and bottom MOSFET R_{DS(ON)} and the duty cycle (D) as follows:

$$R_{SW} = (R_{DS(ON)TOP})(D) + (R_{DS(ON)BOTTOM})(1-D)$$

The R_{DS(ON)} for both the top and bottom MOSFETs can be obtained from Electrical Characteristics table. Thus, to obtained I²R losses, simply add R_{SW} to R_L and multiply the result by the square of the average output current.

Other losses including C_{IN} and C_{OUT} ESR dissipative losses and inductor core losses generally account for less than 2% total additional loss.

Thermal Considerations


In most application the AME5287 does not dissipate much heat due to its high efficiency. But, in applications where the AME5287 is running at high ambient temperature with low supply voltage and high duty cycles, such as in dropout, the heat dissipated may exceed the maximum junction temperature of the part. If the junction temperature reaches approximately 160°C, both power switches will be turned off and the SW switch will become high impedance.

3A, 300KHz ~ 2MHz Synchronous Rectified Step-Down Converter

3A, 300KHz ~ 2MHz Synchronous Rectified Step-Down Converter

■ Typical Operating Circuit

V _{OUT} (V)	C _{IN} (µF)	$R1(K\Omega)$	R2(K Ω)	R3(K Ω)	C1(pF)	L(µH)	C _{OUT} (μF)
3.3	10	75	24	25	680	2.2	22
2.5	10	51	24	20	680	2.2	22
1.8	10	30	24	15	680	1.5	22
1.5	10	21	24	13	680	1.5	22
1.2	10	12	24	11	680	1.5	22
1	10	6	24	8.2	680	1.5	22

Table 1. Recommended Components Selectin for fsw = 2MHz

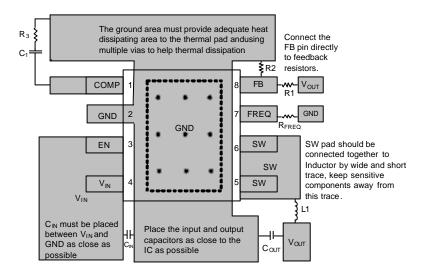
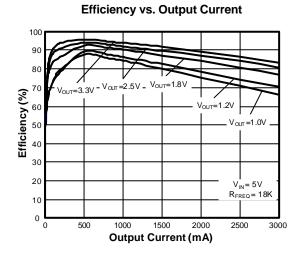
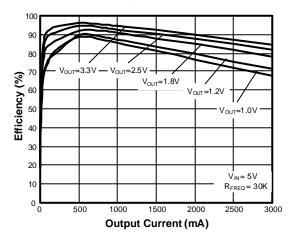
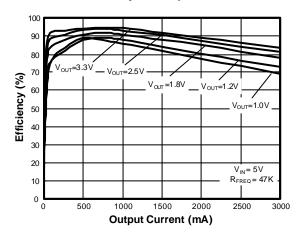
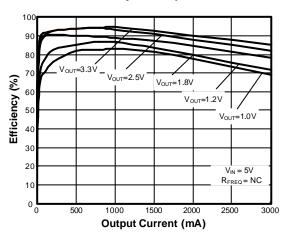



Figure 3. AME5287 Regulators Layout Diagram

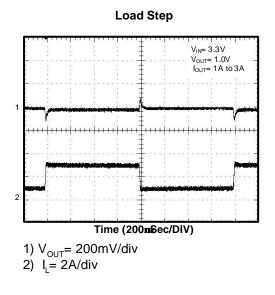


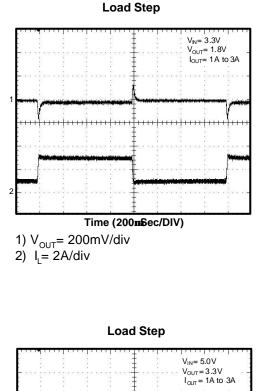
3A, 300KHz ~ 2MHz Synchronous Rectified Step-Down Converter

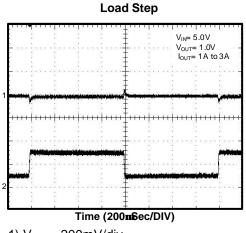

■ Characterization Curve


Efficiency vs. Output Current

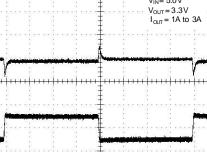
Efficiency vs. Output Current


Efficiency vs. Output Current



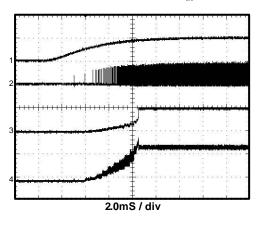


3A, 300KHz ~ 2MHz Synchronous Rectified Step-Down Converter


■ Characterization Curve (Contd.)

1) V_{OUT}= 200mV/div 2) I_L= 2A/div

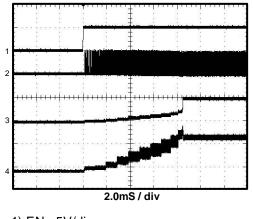
Time (200m&ec/DIV) 1) V_{OUT}= 200mV/div 2) I_L= 2A/div


2

3A, 300KHz ~ 2MHz Synchronous **Rectified Step-Down Converter**

■ Characterization Curve (Contd.)

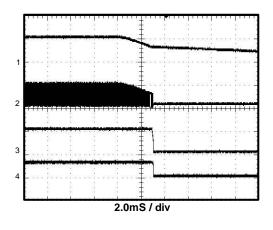
Power ON from V_{IN}

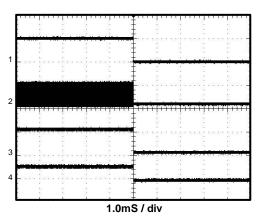


1) V_{IN}= 5V/div

2) Vsw= 5V/div

3) V_{OUT}= 1V/div 4) I_L= 2A/div

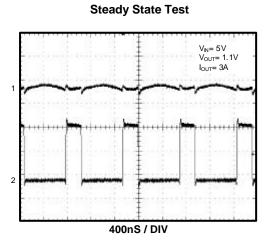

Start-Up from EN


1) EN= 5V/div

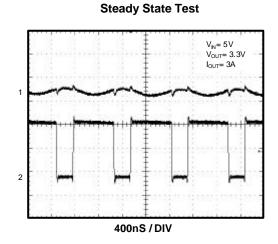
- 2) V_{SW}= 5V/div
- 3) $V_{OUT} = 1V/div$ 4) $I_L = 2A/div$

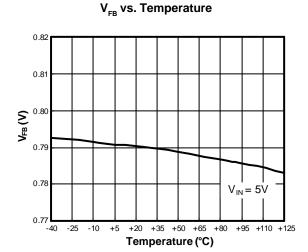
Power off from V_{IN}

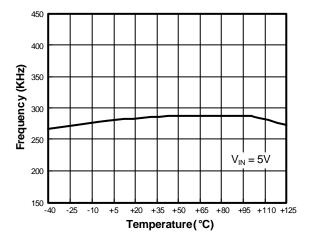
1) V_{IN}= 5V/div 2) Vsw= 5V/div 3) $V_{OUT} = 1V/div$ 4) $I_L = 5A/div$



1) EN= 5V/div 2) V_{sw}= 5V/div 3) $V_{OUT}^{3W} = 1V/div$ 4) $I_L = 5A/div$

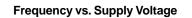

Power Off from EN

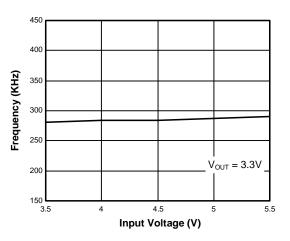

■ Characterization Curve (Contd.)

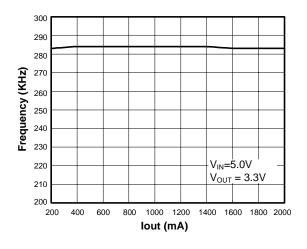

1) V_{OUT} = 10mV/div 2) V_{SW} = 2V/div

1) V_{OUT} = 10mV/div 2) V_{SW} = 2V/div

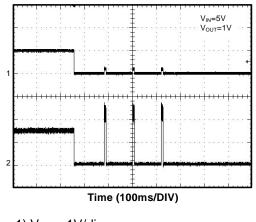
Frequency vs. Temperature



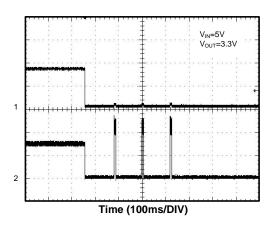

AME5287

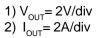

3A, 300KHz ~ 2MHz Synchronous Rectified Step-Down Converter

Characterization Curve (Contd.)



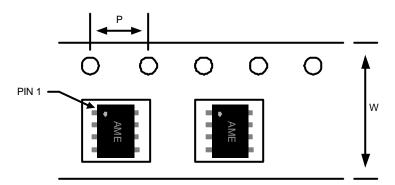
Frequency vs. Output Current




Short Circuit Test

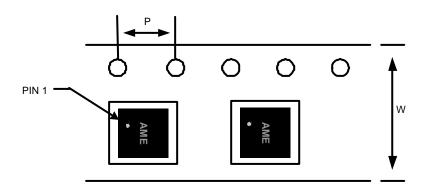
1) V_{OUT}= 1V/div 2) I_{OUT}= 2A/div

Short Circuit Test



3A, 300KHz ~ 2MHz Synchronous Rectified Step-Down Converter

■ Tape and Reel Dimension

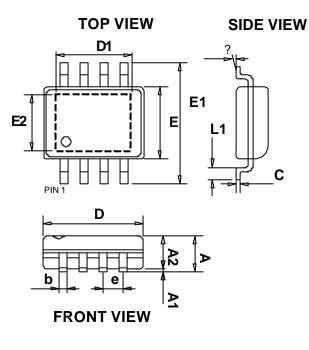

SOP-8/PP

Carrier Tape, Number of Components Per Reel and Reel Size

Package	Carrier Width (W)	Pitch (P)	Part Per Full Reel	Reel Size
SOP-8/PP	12.0±0.1 mm	4.0±0.1 mm	2500pcs	330±1 mm

DFN-8C (3mmx3mmx0.75mm)

Carrier Tape, Number of Components Per Reel and Reel Size

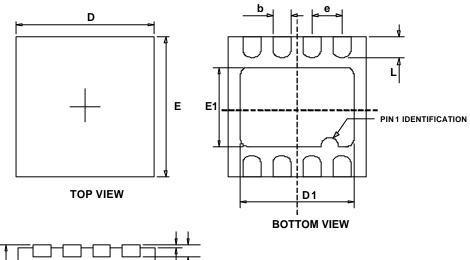

Package	Carrier Width (W)	Pitch (P)	Part Per Full Reel	Reel Size
DFN-8C (3x3x0.75mm)	12.0±0.1 mm	4.0±0.1 mm	3000pcs	330±1 mm

AME5287

Package Dimension

SOP-8/PP

SYMBOLS	MILLIM	IETERS	INC	HES
STNIDULS	MIN	MAX	MIN	MAX
Α	1.350	1.750	0.053	0.069
A1	0.000	0.150	0.000	0.006
A2	1.350	1.600	0.053	0.063
С	0.100	0.250	0.004	0.010
Е	3.750	4.150	0.148	0.163
E1	5.700	6.300	0.224	0.248
L1	0.300	1.270	0.012	0.050
b	0.310	0.510	0.012	0.020
D	4.720	5.120	0.186	0.202
е	1.270	BSC	0.050	BSC
q	0°	8°	0°	8°
E2	2.150	2.513	0.085	0.099
D1	2.150	3.402	0.085	0.134



■ Package Dimension (Contd.)

DFN-8C

AME5287

(3mmx3mmx0.75mm)

REAR VIEW

SYMBOLS	MILLIN	IETERS	INCHES	
STMBULS	MIN	MAX	MIN	МАХ
Α	0.700	0.800	0.028	0.031
D	2.900	3.100	0.114	0.122
Е	2.900	3.100	0.114	0.122
е	0.600	0.700	0.024	0.028
D1	2.200	2.400	0.087	0.094
E1	1.400	1.600	0.055	0.063
b	0.180	0.320	0.007	0.013
L	0.375	0.575	0.015	0.023
G	0.153	0.253	0.006	0.010
G1	0.000	0.050	0.000	0.002

www.ame.com.tw E-Mail: sales@ame.com.tw

Life Support Policy:

These products of AME, Inc. are not authorized for use as critical components in life-support devices or systems, without the express written approval of the president of AME, Inc.

AME, Inc. reserves the right to make changes in the circuitry and specifications of its devices and advises its customers to obtain the latest version of relevant information. © AME, Inc. , October 2012

Document: TU003-DS5287-A.01

Corporate Headquarter AME, Inc.

8F, 12, WenHu St., Nei-Hu Taipei 114, Taiwan . Tel: 886 2 2627-8687 Fax: 886 2 2659-2989